COT2104 Answers Hwk 2 (parts 1 and 2)

1. a) f is not a function because there is no pair with the form ($3, \ldots$)
b) f is not a function because there is two pairs with the form $\left(1, _\right)$
c) f is a function
2. A : The set of students registered at U of C.

B: The set of professors at U of C
C : The set of courses currently being offered at U of C .
a) $\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}$'s first class each week is in c$\}$

Assuming that each student currently registered at U of C is taking at least one course, then is a function.
b) $\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}$ has a class in C Saturday evening $\}$

Assuming students have no classes on Saturday evening since the set would contain no pair ($\mathrm{a}, _$), then it is not a function.
Note: If there is a class on Saturday evening, it could be considered a function.
3. The inverse $\mathrm{f}^{1}=\{(2,1),(4,2),(3,3),(1,4)\}$
4. $f: R \rightarrow R$ given by $f(x)=x^{3}-2$
the inverse is

$$
\begin{array}{ll}
f(x)=y & \\
y=x^{3}-2 & \\
x=y^{3}-2 & \text { change } x \text { and } y \\
y=(x+2)^{1 / 3} & \text { solve for } y \\
y=f^{1}(x) &
\end{array}
$$

$f^{1}: R \rightarrow R$ is defined by $f^{1}(x)=(x+2)^{1 / 3}$
5. Show that $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{R}$ is one-to-one. Find the range and its inverse

Suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$ then $5-1 /\left(1+x_{1}\right)=5-1 /\left(1+x_{2}\right)$
So $1 /\left(1+x_{1}\right)=1 /\left(1+x_{2}\right)$
And $1+\mathrm{x}_{1}=1+\mathrm{x}_{2}$
$\mathrm{x}_{1}=\mathrm{x}_{2}$. Thus f is one-to-one

$$
\begin{aligned}
y \in \operatorname{rng} & \leftrightarrow y=f(x) \text { for some } x \in A \\
& \leftrightarrow \text { There is an } x \in A \text { such that } y=5-1 /(1+x) \\
& \leftrightarrow \text { an } x \in A \text { such that } y-5=-1 /(1+x) \\
& \leftrightarrow \text { an } x \in A \text { such that }(y-5)(1+x)=-1 \\
& \leftrightarrow y \neq 5
\end{aligned}
$$

Thus rng $\mathrm{f}=\mathrm{B}=\{\mathrm{y} \in \mathrm{R} \mid \mathrm{y} \neq 5\}$ and f has an inverse $\mathrm{B} \rightarrow \mathrm{A}$
To find $f^{-1}(x)$, let $y=f^{-1}(x), x \in B$

$$
\begin{aligned}
& f(x)=y \\
& x=5-1 /(y+1)
\end{aligned}
$$

$$
\begin{gathered}
x-5=-1 /(y+1) \\
(x-5)(y+1)=-1 \\
y+1=-1 /(x-5) \quad \text { since } x \neq 5 \\
f^{-1}(x)=-1-1 /(x-5)
\end{gathered}
$$

6) Find a one-to-one correspondence between each of the following pairs of sets.
a) $\{\mathrm{x}, \mathrm{y},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$ and $\{14,-3, \mathrm{t}\}$
$\mathrm{x} \leftrightarrow 14, \mathrm{y} \leftrightarrow-3,\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \leftrightarrow \mathrm{t}$
c) 2 Z and 17 Z
$\mathrm{f}: 2 \mathrm{z} \rightarrow 17 \mathrm{Z}$ defined by $\mathrm{f}(2 \mathrm{k})=7 \mathrm{k}$ for $2 \mathrm{k} \in 2 \mathrm{Z}$
7)

a) $\mathrm{f}^{-1}=\{(2,1),(3,2),(4,3),(1,4)\}$
b) $g^{\circ} f$

$$
\begin{array}{rl}
\mathrm{g}^{\circ} \mathrm{ff}(1) & =\mathrm{g}(\mathrm{f}(1))=1 \\
\mathrm{~g} \circ & \mathrm{f}(2) \\
\mathrm{g} & \mathrm{~g}(\mathrm{f}(2))=4 \\
\mathrm{~g}^{\circ} \mathrm{f}(3) & =\mathrm{g}(\mathrm{f}(3))=2 \\
\mathrm{~g} \circ \mathrm{f}(3) & =\mathrm{g}(\mathrm{f}(4))=3 \\
\mathrm{~g}^{\circ} \mathrm{f}=\{(1,1),(2,4),(3,2),(4,3)\}
\end{array}
$$

c) g is not one-to-one because $g(2)=g(5)$, but $2 \neq 5$
8.
a) 9833 is prime
b) 150 is composite
9.
a) $\mathrm{a}=-5286 ; \mathrm{b}=19, \mathrm{~b}>0 \leftarrow$ floor

$$
q=\lfloor-5286 / 19\rfloor=-279, r=15
$$

b) $\mathrm{a}=5286 ; \mathrm{b}=-19, \mathrm{~b}>0 \leftarrow$ ceiling

$$
\mathrm{q}=\lceil 5286 /-19\rceil=-278, \mathrm{r}=4
$$

10.

$57482^{15} 2^{14} 2^{13} 2^{12} 2^{11} 2^{10} 2^{9} 2^{8} 2^{7} 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0}$
a) $57483_{10}=1 \begin{array}{lllllllllllllll}1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1_{2}\end{array}$

$$
\begin{aligned}
& 8^{5} \\
\hline & 8^{4} \\
8^{3} & 8^{2}
\end{aligned} 8^{1} \quad 8^{0} 0
$$

$$
16^{3} 16^{2} 16^{1} 16^{0}
$$

$$
\begin{aligned}
& \begin{array}{llll}
\mathrm{E} & 0 & 8 & \mathrm{~B}_{16}
\end{array} \\
& 2^{17} 2^{16} 2^{15} 2^{14} 2^{13} 2^{12} 2^{11} 2^{10} 2^{9} 2^{8} 2^{7} 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0} \\
& \text { b) } 185,178_{10}=1 \begin{array}{lllllllllllllllll}
\\
0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllll}
8^{5} & 8^{4} & 8^{3} & 8^{2} & 8^{1} & 8^{0}
\end{array} \\
& =\begin{array}{llllll}
5 & 5 & 1 & 5 & 3 & 28
\end{array} \\
& 16^{4} 16^{3} 16^{2} 16^{1} 16^{0} \\
& =2 \quad \mathrm{D} 3 \mathrm{~S}^{2} \quad \mathrm{~A}_{16}
\end{aligned}
$$

11.

$\begin{array}{rlr}\text { a) } \mathrm{a}=1575, \mathrm{~b}=231 & \mathrm{r}=\mathrm{a} \bmod \mathrm{b}=189 & \text { Note: mod gives the remainder }(\mathrm{r}) \\ \mathrm{a}=231, \mathrm{~b}=189 & \mathrm{r}=\mathrm{a} \bmod \mathrm{b}=42 & \\ \mathrm{a}=189, \mathrm{~b}=42 & \mathrm{r}=\mathrm{a} \bmod \mathrm{b}=21 & \\ \mathrm{a}=42, \mathrm{~b}=21 & \mathrm{r}=\mathrm{a} \bmod \mathrm{b}=0, \quad \operatorname{gcd}(1575,231)=21\end{array}$
b) $\mathrm{b}=3719, \mathrm{a}=8416 \quad \mathrm{r}=\mathrm{a} \bmod \mathrm{b}=189$

Note: $\operatorname{gcd}(8416,3719)=\operatorname{gcd}(-3719,8416)$

$$
\begin{array}{ll}
\mathrm{a}=8416, \mathrm{~b}=3719 & \mathrm{r}=\mathrm{a} \mathrm{\bmod b=978} \\
\mathrm{a}=3719, \mathrm{~b}=978 & \mathrm{r}=\mathrm{a} \bmod \mathrm{~b}=785 \\
\mathrm{a}=978, \mathrm{~b}=785 & \mathrm{r}=\mathrm{a} \bmod \mathrm{~b}=193, \\
\mathrm{a}=785, \mathrm{~b}=193 & \mathrm{r}=\mathrm{a} \bmod \mathrm{~b}=13 \\
\mathrm{a}=193, \mathrm{~b}=13 & \mathrm{r}=\mathrm{a} \operatorname{\operatorname {mod}b=11} \\
\mathrm{a}=13, \mathrm{~b}=11 & \mathrm{r}=\mathrm{a} \bmod \mathrm{~b}=2 \\
\mathrm{a}=13, \mathrm{~b}=2 & \mathrm{r}=\mathrm{a} \bmod \mathrm{~b}=1, \quad \operatorname{gcd}(8416,3719)=1
\end{array}
$$

c) $\mathrm{a}=28,844, \mathrm{~b}=15,712 \quad \mathrm{r}=\mathrm{a} \bmod \mathrm{b}=13132$

Note: $\operatorname{gcd}(28844,15712)=\operatorname{gcd}(28844,-15712)$

$$
\begin{array}{ll}
a=15712, b=13132 & r=a \bmod b=2580 \\
a=13132, b=2580 & r=a \bmod b=232 \\
a=2580, b=232 & r=a \bmod b=28 \\
a=232, b=28 & r=a \bmod b=8 \\
a=28, b=8 & r=a \bmod b=4 \\
a=8, b=4 & r=a \bmod b=0
\end{array}
$$

$\operatorname{gcd}(28844,15712)=4$
12. $\operatorname{lcm}(a, b)=|a \cdot b| / \operatorname{gcd}(a, b)$
a) $\operatorname{lcm}(1575,231)=|1575.231| / 21=|363825 / 21|=17325$
b) $\operatorname{lcm}(8416,3719)=|8416.3719| / 1=|363825 / 1|=31299104$
c) $\operatorname{lcm}(28844,15712)=|28844.15712| / 4=|453196928 / 4|=113299232$
13. Prime numbers less than 200 are

23571113171923313741434753596167717379838997
101103107109113127131137139149151157163167173179 181191193197199
(see method developed in class (Power Point chapter 4).
14. Find $a(\bmod n)$
a) $\mathrm{a}=43,197, \mathrm{n}=39$
$43197(\bmod 39)=24$
$43,197 / 39=1107.6=1107$
$43,197=1107(39)+24$
b) $\mathrm{a}=-125,617, \mathrm{n}=315$
$-125,617(\bmod 315)=68$
$-125,617 / 315=-398.7=-399$
$-125,617=-399(315)+68$
15. Find the solution of the following congruencies
a) $\mathrm{x} \equiv 7(\bmod 9)$
$9 \mid(x-7)$, so $x=7$ because $9 \mid 0$
b) $x \equiv 4(\bmod 12)$
$12 \mid(x-4)$, so $x=4$ because $12 \mid 0$
c) $\mathrm{x} \equiv 16(\bmod 21)$
$21 \mid(x-16)$, so $x=16$ because $21 \mid 0$

